PREUVE! – Le site d'information sur les solides platoniciens: … Géometrie sacrée

et un contre-exemple global est un exemple qui contredit l'hypothèse la plus importante que vous essayez de prouver. Vous comprenez donc que votre contre-exemple est local, mais pas global. C'est une critique valable de ma preuve, mais pas de la présomption initiale que V + F – E = 2.

au cours de votre voyage d’apprentissage des cristaux, vous avez sans doute rencontré des mots et des conversations étranges que vous n’auriez sans doute jamais cru avoir un rapport avec les cristaux, comme le tétraèdre, l’icosaèdre et les solides de Platon. Et tu pensais que tu n’aurais jamais besoin de ta géométrie après le lycée ! Alors, que sont exactement les solides de Platon ? En termes simples, il s’agit de polygones pleins ( une forme bidimensionnelle où tous les côtés et les angles sont égaux ), qui ont des faces planes et dont chaque face a la même forme et la même taille. Platon a théorisé que les composants principaux ( terre, air, feu et eau ) étaient directement liés aux solides. il existe cinq robustes de Platon : Tétraèdre – 4 faces ( feu ) ; Cube – 6 faces ; Octaèdre – 8 faces ; Dodécaèdre – 12 faces, et Icosaèdre – 20 faces ; Tétraèdres, qui ressemblent à une pyramide, sont associés à le composant feu. Les cubes sont associés à la terre. Les octaèdres ressemblent à un losange et sont liés à l’élément de l’air. Les icosaèdres ( composés de 20 triangles équilatéraux ) sont associés à le composant eau. Le dernier et souvent appelé le cinquième élément, l’éther, ou Akasha, a été nommé par Aristote et on dit que c’est ce qui compose le ciel. Le dernier solide de Platon, le dodécaèdre, est associé à l’élément d’éther

Laisser un commentaire