Origami mathématique: Dodécaèdre PHiZZ | solides de Platon

Origami mathématique: dodécaèdre PHiZZ Nous allons décrire comment créer un dodécaèdre ordinaire à l'aide de dispositifs d'origami modulaires PHiZZ de Tom Hull. Nous devons d’abord savoir combien de faces, d’arêtes et de

Les anciennes cultures néolithiques ont gravé des clichés des éléments de la nature sur des boules de pierre un millier d’années avant qu’elles ne soient renommées sous le nom de robustes platoniques. Les philosophes et les mathématiciens grecs ont analysé l’idée des formes primaires. Certains attribuent leurs sources à Pythagore ( 570-495 av. J. -C. ), Empedocle ( 490-430 av. J. -C. ) ou Theaetetus ( 417-369 av. J. -C. ). Platon ( 424-347 av. J. -C. ), un étudiant de Socrate, en a beaucoup parlé dans son dialogue avec Timée. Il les a décrits comme les éléments constitutifs de la vie représentés par les quatre composants que sont la terre, l’eau, le feu et l’air. Aristote a identifié un cinquième élément qu’il a nommé Aether. Euclide ( 323-283 av. J. -C. ) les réunit, les nomme les Solides de Platon et leur donne des descriptions mathématiques précises dans son bouqin Elements. Ce vaste corpus de connaissances est passé pratiquement sous terre jusqu’à ce que Johannes Kepler ( 1571-1630 ), un astronome allemand, considère la sphère comme un conteneur pour chacun des cinq solides de Platon. Il a aussi essayé de relier les solides aux six planètes renommées de Mercure, Vénus, Terre, Mars, Jupiter et Saturne. En forme euclidienne, un solide de Platon est défini comme un polyèdre périodique et convexe, dont les faces sont des polygones réguliers et congruents, avec le même nombre de faces se rencontrant à chaque sommet qui s’inscrivent dans une sphère. Empedocle voyait l’amour comme le pouvoir qui attire ces formes ensemble tandis que la bataille les sépare. Les composants ont inspiré l’art, la méthode et la compréhension de l’élégance de notre monde. n

Laisser un commentaire