solides de Platon rechargement : solides de Platon icosaèdre

solides de Platon rechargement : Radiesthésie Solides de Platon

  • tétraèdre solides de Platon
  • FEU solides de Platon:intuition solides de Platon

solides de Platon en cristal de roche

Les robustes de Platon sont identifiés depuis l’antiquité. Il a été suggéré que certaines boules de pierre sculptées créées par les derniers néolithiques d’Écosse s’avère être ces formes ; cependant, ces boules ont des boutons arrondis en l’occurence que polyédriques, le volume de boutons diffère souvent du nombre de sommets des solides de Platon, il n’y a aucune boule dont les boutons conviennent aux 20 sommets du dodécaèdre et l’arrangement des attaches ne l’est pas toujours. nnLes Grecs de l’Antiquité ont analysé en profondeur les solides de Platon. Certaines sources ( comme Proclus ) attribuent leur découverte à Pythagore. D’autres preuves suggèrent qu’il ne connaissait sans doute que le tétraèdre, le cube et le dodécaèdre et que la découverte de l’octaèdre et de l’icosaèdre appartient à Theaetetus, un contemporain de Platon. en tout cas, Theaetetus a donné une description mathématique des cinq et a pu être responsable de la première preuve connue qu’il n’existe aucun autre polyèdre convexe annuel. nnLes robustes de Platon sont proéminents dans la philosophie de Platon, leur homonyme. Platon a écrit à leur sujet dans le dialogue Timée c. 360 av. J. -C. dans lequel il a associé chacun des 4 composants classiques ( terre, aspect, eau et feu ) avec un solide régulier. La Terre était associée au cube, l’air à l’octaèdre, l’eau à l’icosaèdre et le feu au tétraèdre. Il y avait une justification intuitive pour ces : la chaleur du feu est aiguë et poignardante ( comme un petit tétraèdre ). L’air est composé de l’octaèdre ; ses minuscules composantes sont si lisses qu’on peut simplement le ressentir. L’eau, l’icosaèdre, coule de la main quand on la ramasse, comme si elle était faite de petites boules minuscules. a l’inverse, solide très non sphérique, l’hexaèdre ( cube ) représente la ‘ terre ‘. de plus, le cube est la seul personne solide périodique qui tesselle la taille euclidien et qui est considéré comme la cause de la solidité de la Terre. nnDu cinquième solide platonique, le dodécaèdre, Platon remarque obscurément, ‘… le dieu s’en servait pour disposer les constellations sur tout le ciel ‘. Aristote ajouta un cinquième élément, aithēr ( aether en latin, ‘ éther ‘ en langue anglaise ) et postule que les cieux étaient faits de cet élément, mais il n’avait aucun intérêt à le faire correspondre avec le cinquième solide de Platon. nnEuclide pleinement mathématiquement décrit les robustes de Platon dans les éléments, le dernier bouqin ( Livre XIII ) qui est consacré à leurs caractéristiques. Les propositions 13-17 du bouqin XIII décrivent la construction du tétraèdre, de l’octaèdre, du cube, de l’icosaèdre et du dodécaèdre dans cet ordre. Pour chaque solide, Euclide trouve le rapport du diamètre de la sphère circonscrite à la longueur du bord. Dans la Proposition 18, il soutient qu’il n’y a plus de polyèdres constants convexes. Andreas Speiser a défendu l’idée que la construction des 5 robustes réguliers est le but principal du matériel déductif canonisé dans les Éléments[5] Une grande partie de l’information dans le Livre XIII est sans aucun doute dérivée des travaux de Theaetetus. nnAu XVIe s., l’astronome allemand Johannes Kepler a tenté de raccorder les cinq planètes extraterrestres connues à l’époque aux cinq solides platoniques. Dans Mysterium Cosmographicum, mis en ligne en 1596, Kepler a proposé un exemplaire du système solaire dans lequel les cinq robustes ont été insérés les uns dans les autres et séparés de par une quantité de sphères inscrites et circonscrites. Kepler a proposé que les relations de distance entre les six planètes connues à ce moment-là pourrait être compris en matière de cinq solides de Platon enfermé dans une sphère qui représente l’orbite de Saturne. Les six sphères correspondaient chacune à l’une des planètes ( Mercure, Vénus, Terre, Mars, Jupiter et Saturne ). Les robustes ont été ordonnés avec l’octaèdre à l’intérieur, suivi de l’icosaèdre, du dodécaèdre, du tétraèdre et au final du cube, dictant ainsi la structure du matériel solaire et les relations de distance entre les planètes par les robustes platoniques. En fin de compte, l’idée originale de Kepler a dû être abandonnée, mais de ses recherches sont apparus ses trois lois de la dynamique orbitale, dont la première est que les orbites des planètes sont des ellipses plutôt que des cercles, ce qui a évolué le cours de la réel et l’astronomie. Il a aussi trouvé les solides de Kepler.